久久亚洲精品中文字幕,国产成人精品一区二区三区不卡,99久久人妻无码精品系列蜜桃,久久人人爽人人爽人人片

UWB module indoor positioning personnel positioning system

2022-07-26 750

The future development trend of UWB module indoor positioning personnel positioning system, with the continuous update of new communication equipment, the performance of Internet of Things equipment continues to improve, especially the location awareness and personnel identification functions of personnel positioning system are becoming more and more powerful, not only in outdoor, but also It can provide accurate positioning indoors. So, what is the development status of indoor personnel positioning system and how will it develop in the future? The following small series will introduce you one by one.

UWB module indoor positioning personnel positioning system

The development status of indoor positioning personnel positioning system:


Location-based outdoor positioning and services have matured. The location service of GPS maps has been widely used and has become one of the most widely used applications in various mobile devices. In recent years, the related technologies and industries of location-based services are developing to provide location-based ubiquitous services, and the main driving force is the huge application and commercial potential that indoor location-based services can bring. Many companies including OS vendors, service providers, equipment and chip suppliers are competing in this market.


UWB module indoor location awareness can support many application scenarios and is changing traditional mobile device usage patterns. For example, a user can find a specific restaurant or store, get special offers from a nearby mall, find a colleague at an office, find a gate/platform or other facility at an airport or train station, learn more about exhibition information, view an exhibition at a museum , the hospital determines the location of medical personnel or medical equipment, the positioning of firefighters in a fire building, etc.


Imagine a scenario where our phone automatically turns on silent mode when we go to a conference room for a meeting. When we see an item of interest in the mall, but still hesitate, take a photo and automatically mark the location of the photo. The next time we decide to buy, our phones help us navigate to the location of the item. These will give us daily life and work, as well as in emergency situations.


Indoor positioning of UWB modules faces many unique challenges. For example, the indoor environment is highly dynamic and can be said to be diverse. Different buildings will have different interior layouts; interior environments are more refined and require greater precision to distinguish different features. These unique characteristics of indoor environments make many existing solutions environment- and application-specific solutions. Different restrictions apply if ported to other environments and applications. So what are the requirements for a practical indoor positioning solution? UWB modules mainly include the following aspects: accuracy, coverage, reliability, cost, power consumption, scalability and response time.


The future development trend of indoor personnel positioning system:


(1) Due to the maturity of UWB module solutions and the reduction of costs, in the past two years, domestic researchers and companies have gradually emerged to research UWB timely positioning technology, which can achieve system positioning accuracy of 10cm or even 6cm. But as mentioned earlier, such high positioning accuracy is not required for all applications, so it also determines that it can only be used in industries that have higher requirements for ensuring life and property.


Such as: chemical plant personnel positioning, mine personnel positioning, nursing home personnel nursing, large-scale warehouse cargo positioning, etc. Wi-Fi and iBeacons positioning are very different in the commercial field. In addition to the commercial fields just mentioned, which often do not require high positioning accuracy, another important reason is that the positioning of the UWB module requires additional labels for the people and objects to be located (compared to mobile phones and other terminals, which are natural labels). But it does not rule out the integration of UWB modules in smart wearable devices, so that this high-precision positioning can be used in all aspects of life.


(2) The hybrid positioning method combining multiple technologies meets the needs of various indoor environments and application scenarios and makes up for the limitations of a single technology. It has become a trend that more and more solutions are based on the integration of 9-axis or 12-axis inertial sensor technology and other technologies WiFi positioning technology. Google, Broadcom, CSR provide hybrid solutions with multiple technology integrations. In the future, there will be more solutions that are complete sensor UWB module/WiFi/BLE hybrid solutions to meet various needs.


(3) Indoor maps and indoor positioning databases will develop rapidly, and related technologies will mature to ensure rapid expansion capabilities and reliability and consistency of positioning performance. Challenges here include scalability of maps and databases, and techniques for generating and maintaining databases quickly and efficiently.


(4) Location-based applications and services will make greater use of proximity sensing and discovery. Relative to positioning, nearby discovery is simpler because it does not need to calculate the exact location, but just discovers nearby devices that can provide the corresponding service. This technique has a great impact on indoor and continuous localization and can be a good complement, especially for scenes where accurate localization is not easy to achieve.


(5) The UWB module uses a dedicated positioning engine to handle positioning, motion detection, sensor data analysis, information integration and geo-fencing. By using dedicated processors to handle motion, context, and positioning, application processor wake-ups can be reduced, power consumption optimized and reduced, enabling location-awareness goals.


(6) Low power consumption optimization, reducing the extra power consumption caused by the positioning function of mobile devices, and realizing accurate positioning anytime, anywhere. Including using a dedicated positioning processing engine, waking up the application processor as little as possible, combining motion detection and behavior pattern detection to reduce power consumption, integrating various positioning technologies, selecting energy-saving technologies, turning off or putting high-power positioning technologies in sleep mode, Reduce the use of high-power sensors.


教官脱了男生衣服摸j的故事 | 我和小雪的故事| 老头把我添高潮了a片| 另类sm一区二区三区免费视频| 国产伦孑沙发午休精品| 一个添下面两个吃奶把腿扒开 | 啦啦啦资源在线观看视频| 岳的又肥又大又紧水有多视频| 日韩毛片免费无码无毒视频观看| 亚洲精品午夜无码专区| 成熟女人特级毛片WWW免费| 中文字幕一线产区和二线区的区别| 久久久精品人妻一区二区三区| 精品无码一区二区三区亚洲桃色 | 日本少妇高潮喷水xxxxxxx| 国产精品 重口 调教系列| 精品国产三级av一区二区三区| 日韩高清无码| 成人99精品久久毛片a片小说| 精品国产乱码久久久久久浪潮| 中文字幕人成人乱码亚洲影| 亚洲av在线观看| 人妻精品久久久久中文字幕69| 人妻无码熟妇乱又伦精品| 亚洲国产精品无码专区网站 | 伊人思思久99久女女精品视频 | 一本一道AV无码中文字幕| 曰韩人妻无码一区二区三区综合部| 我帮妺妺洗澡忍不住c了她| 免费a级毛片无码视频| 久久综合亚洲色hezyo国产| a级a片少妇高潮喷水片| 国产做a爱免费视频在线观看| 免费大片黄在线观看视频 | 年轻教师6电影完整版| 末成年女a片一区二区| 邻居老头把我弄舒服死了| 无码人妻一区二区三区在线| 日韩色欲人妻无码精品av| 久久国产精品-国产精品| 亚洲2022国产成人精品无码区|