久久亚洲精品中文字幕,国产成人精品一区二区三区不卡,99久久人妻无码精品系列蜜桃,久久人人爽人人爽人人片

UWB module indoor positioning personnel positioning system

2022-07-26 750

The future development trend of UWB module indoor positioning personnel positioning system, with the continuous update of new communication equipment, the performance of Internet of Things equipment continues to improve, especially the location awareness and personnel identification functions of personnel positioning system are becoming more and more powerful, not only in outdoor, but also It can provide accurate positioning indoors. So, what is the development status of indoor personnel positioning system and how will it develop in the future? The following small series will introduce you one by one.

UWB module indoor positioning personnel positioning system

The development status of indoor positioning personnel positioning system:


Location-based outdoor positioning and services have matured. The location service of GPS maps has been widely used and has become one of the most widely used applications in various mobile devices. In recent years, the related technologies and industries of location-based services are developing to provide location-based ubiquitous services, and the main driving force is the huge application and commercial potential that indoor location-based services can bring. Many companies including OS vendors, service providers, equipment and chip suppliers are competing in this market.


UWB module indoor location awareness can support many application scenarios and is changing traditional mobile device usage patterns. For example, a user can find a specific restaurant or store, get special offers from a nearby mall, find a colleague at an office, find a gate/platform or other facility at an airport or train station, learn more about exhibition information, view an exhibition at a museum , the hospital determines the location of medical personnel or medical equipment, the positioning of firefighters in a fire building, etc.


Imagine a scenario where our phone automatically turns on silent mode when we go to a conference room for a meeting. When we see an item of interest in the mall, but still hesitate, take a photo and automatically mark the location of the photo. The next time we decide to buy, our phones help us navigate to the location of the item. These will give us daily life and work, as well as in emergency situations.


Indoor positioning of UWB modules faces many unique challenges. For example, the indoor environment is highly dynamic and can be said to be diverse. Different buildings will have different interior layouts; interior environments are more refined and require greater precision to distinguish different features. These unique characteristics of indoor environments make many existing solutions environment- and application-specific solutions. Different restrictions apply if ported to other environments and applications. So what are the requirements for a practical indoor positioning solution? UWB modules mainly include the following aspects: accuracy, coverage, reliability, cost, power consumption, scalability and response time.


The future development trend of indoor personnel positioning system:


(1) Due to the maturity of UWB module solutions and the reduction of costs, in the past two years, domestic researchers and companies have gradually emerged to research UWB timely positioning technology, which can achieve system positioning accuracy of 10cm or even 6cm. But as mentioned earlier, such high positioning accuracy is not required for all applications, so it also determines that it can only be used in industries that have higher requirements for ensuring life and property.


Such as: chemical plant personnel positioning, mine personnel positioning, nursing home personnel nursing, large-scale warehouse cargo positioning, etc. Wi-Fi and iBeacons positioning are very different in the commercial field. In addition to the commercial fields just mentioned, which often do not require high positioning accuracy, another important reason is that the positioning of the UWB module requires additional labels for the people and objects to be located (compared to mobile phones and other terminals, which are natural labels). But it does not rule out the integration of UWB modules in smart wearable devices, so that this high-precision positioning can be used in all aspects of life.


(2) The hybrid positioning method combining multiple technologies meets the needs of various indoor environments and application scenarios and makes up for the limitations of a single technology. It has become a trend that more and more solutions are based on the integration of 9-axis or 12-axis inertial sensor technology and other technologies WiFi positioning technology. Google, Broadcom, CSR provide hybrid solutions with multiple technology integrations. In the future, there will be more solutions that are complete sensor UWB module/WiFi/BLE hybrid solutions to meet various needs.


(3) Indoor maps and indoor positioning databases will develop rapidly, and related technologies will mature to ensure rapid expansion capabilities and reliability and consistency of positioning performance. Challenges here include scalability of maps and databases, and techniques for generating and maintaining databases quickly and efficiently.


(4) Location-based applications and services will make greater use of proximity sensing and discovery. Relative to positioning, nearby discovery is simpler because it does not need to calculate the exact location, but just discovers nearby devices that can provide the corresponding service. This technique has a great impact on indoor and continuous localization and can be a good complement, especially for scenes where accurate localization is not easy to achieve.


(5) The UWB module uses a dedicated positioning engine to handle positioning, motion detection, sensor data analysis, information integration and geo-fencing. By using dedicated processors to handle motion, context, and positioning, application processor wake-ups can be reduced, power consumption optimized and reduced, enabling location-awareness goals.


(6) Low power consumption optimization, reducing the extra power consumption caused by the positioning function of mobile devices, and realizing accurate positioning anytime, anywhere. Including using a dedicated positioning processing engine, waking up the application processor as little as possible, combining motion detection and behavior pattern detection to reduce power consumption, integrating various positioning technologies, selecting energy-saving technologies, turning off or putting high-power positioning technologies in sleep mode, Reduce the use of high-power sensors.


人妻尝试又大又粗久久| 一区二区三区视频| 妺妺窝人体色www聚色窝仙踪| 亚洲精品国产摄像头| 两个8丫头稚嫩紧窄| 国产人妻777人伦精品hd| 去男朋友宿舍被室友4p| 熟妇高潮喷沈阳45熟妇高潮喷| 精品无码久久久久国产| 小箩莉末发育娇小性色xxxx| 色戒假戏真做7分27秒视频| 国产成人无码aa精品一区| 国产精品VIDEOSSEX久久| 被夫の上司持久侵犯耻辱在线| 玩弄朋友娇妻呻吟交换电影| 久久99精品国产99久久| 一对浑圆的胸乳被揉捏动态图| 久久精品国产亚洲av无码麻豆| 成年丰满熟妇午夜免费视频| 亚洲欧美日韩高清一区| 人妻无码一区二区三区四区| 中文字幕人妻色偷偷久久| 亚洲国产欧美在线人成| 国产精品偷伦视频免费观看了| 老汉的性生生活1一7| 视频一区二区三区sm重味| 男女啪动最猛动态图 | 亚洲精品无码乱码成人| 艳妇乳肉豪妇荡乳av无码福利 | 无人在线完整免费高清观看 | 国产+日韩+另类+视频一区| 国产熟女高潮视频| 老熟妇高潮一区二区三区| 男男吹潮视频chinese| 拔萝卜高清视频大全免费观看 | 国产乱子伦一区二区三区| 韩国三级丰满少妇高潮| 国产精品国产三级国产专区53| 精品熟女60老妇av免| 成人综合伊人五月婷久久| 熟妇人妻系列AV无码一区二区|